Linear Algebra II

07/07/2011, Thursday, 09:00-12:00

1 Orthogonality

Let V be a real inner product space and $u, v \in V$. Prove the following statements:

- 5 (a) If u and v are orthogonal then $||u||^2 + ||v||^2 = ||u + v||^2$.
- 5 (b) $||u+v||^2 + ||u-v||^2 = 2||u||^2 + 2||v||^2$.
- (c) The vectors u + v and u v are orthogonal if and only if ||u|| = ||v||.

2 Diagonalization

Find an orthogonal diagonalizer for the matrix

$$\begin{bmatrix} 3 & -2 & 2 \\ -2 & 0 & -1 \\ 2 & -1 & 0 \end{bmatrix}.$$

[Hint: -1 is an eigenvalue]

3

3

Singular value decomposition

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric positive semidefinite matrix.

- (a) Show that A is normal.
- (b) Show that all eigenvalues of A are nonnegative.
- (c) Show that λ is a singular value of A if λ is an eigenvalue of A.
- (d) Find a singular value decomposition of A in terms of its eigenvalues and orthogonal diagonalizer
- (e) Find the best rank k approximation of A.

(a) Consider the function

$$f(x,y) = \sin(y) + x^3 + 3xy + 2y - 3x.$$

3 (i) Show that (-1,0) is a stationary point.

5 (ii) Determine whether this point corresponds to a local minimum, maximum, or saddle point.

(b) Let A be a symmetric matrix. Show that e^A is symmetric and positive definite.

 $\mathbf{5}$

Cayley-Hamilton theorem

Let $A \in \mathbb{R}^{2 \times 2}$ be a matrix with the characteristic matrix $p_A(\lambda) = \lambda^2 - 2\lambda - 3$. Let

$$\alpha_0 = 2$$
 $\beta_0 = 3$

and

$$\alpha_{k+1} = 2\alpha_k + \beta_k \quad \beta_{k+1} = 3\alpha_k$$

for $k \geq 0$. Show that

$$A^{n+2} = \alpha_n A + \beta_n I$$

for $n \geq 0$. [Hint: Induction!]

6

12

Jordan canonical form

Find the Jordan canonical form J and determine a matrix X such that $X^{-1}AX = J$ for the matrix

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}.$$

Each problem is 15 points: $6 \times 15 + 10$ (gratis)=100.